Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JOD
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR Logo
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Subscribe Now
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Derivatives
  • IPR Logo
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Subscribe Now
  • Log in
The Journal of Derivatives

The Journal of Derivatives

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JOD
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

Geometric Local Variance Gamma Model

P. Carr and A. Itkin
The Journal of Derivatives Winter 2019, jod.2019.1.084; DOI: https://doi.org/10.3905/jod.2019.1.084
P. Carr
is a professor at the Tandon School of Engineering, New York University, in Brooklyn, NY
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. Itkin
is a professor at the Tandon School of Engineering, New York University, in Brooklyn, NY
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Click to login and read the full article.
Don’t have access? Sign up today to begin your trial to the PMR platform 

Abstract

The article describes another extension of the local variance gamma model originally proposed by Carr in 2008 and then further elaborated by Carr and Nadtochiy in 2017 and Carr and Itkin in 2018. As compared with the latest version of the model developed by Carr and Itkin and called the “expanded local variance gamma” (ELVG) model, two innovations are provided in this article. First, in all previous articles the model was constructed on the basis of a gamma time-changed arithmetic Brownian motion: with no drift in Carr and Nadtochiy, with drift in Carr and Itkin, and with the local variance a function of the spot level only. In contrast, this article develops a geometric version of this model with drift. Second, in Carr and Nadtochiy the model was calibrated to option smiles assuming that the local variance is a piecewise constant function of strike, while in Carr and Itkin the local variance was assumed to be a piecewise linear function of strike. In this article, the authors consider three piecewise linear models: the local variance as a function of strike, the local variance as a function of log-strike, and the local volatility as a function of strike (so, the local variance is a piecewise quadratic function of strike). The authors show that for all these new constructions, it is still possible to derive an ordinary differential equation for the option price, which plays the role of Dupire’s equation for the standard local volatility model, and moreover, it can be solved in closed form. Finally, similar to in Carr and Itkin, the authors show that given multiple smiles the whole local variance/volatility surface can be recovered without requiring solving any optimization problem. Instead, it can be done term-by-term by solving a system of nonlinear algebraic equations for each maturity, which is a significantly faster process.

TOPICS: Derivatives, statistical methods, options

Key Findings

  • • An extension of the Local Variance Gamma model is proposed on the basis of the Geometric Brownian motion with drift.

  • • Three piecewise linear models: the local variance as a function of strike, the local variance as function of log-strike, and the local volatility as a function of strike (so, the local variance is a piecewise quadratic function of strike) are considered.

  • • For all these new constructions an ODE is derived which replaces the Dupire equation and can be solved in closed form.

  • © 2019 Pageant Media Ltd
View Full Text

Don’t have access? Register today to begin unrestricted access to our database of research.

Log in using your username and password

Forgot your user name or password?
Next
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Derivatives: 28 (2)
The Journal of Derivatives
Vol. 28, Issue 2
Winter 2020
  • Table of Contents
  • Index by author
  • Complete Issue (PDF)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Derivatives.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Geometric Local Variance Gamma Model
(Your Name) has sent you a message from The Journal of Derivatives
(Your Name) thought you would like to see the The Journal of Derivatives web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Geometric Local Variance Gamma Model
P. Carr, A. Itkin
The Journal of Derivatives Sep 2019, jod.2019.1.084; DOI: 10.3905/jod.2019.1.084

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
Geometric Local Variance Gamma Model
P. Carr, A. Itkin
The Journal of Derivatives Sep 2019, jod.2019.1.084; DOI: 10.3905/jod.2019.1.084
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
    • Abstract
    • STOCHASTIC MODEL
    • FORWARD EQUATION FOR OPTION PRICES
    • PIECEWISE MODELS OF LOCAL VARIANCE/VOLATILITY
    • COMPUTATION OF SOURCE TERM
    • SMILE CALIBRATION FOR A SINGLE TERM
    • DISCUSSION
    • CONCLUSIONS
    • ADDITIONAL READING
    • ACKNOWLEDGMENT
    • APPENDIX A
    • APPENDIX B
    • APPENDIX C
    • APPENDIX D
    • ENDNOTES
    • REFERENCES
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • An Arbitrage-Free Interpolation of Class C2 for Option Prices
  • Google Scholar
LONDON
One London Wall, London, EC2Y 5EA
United Kingdom
+44 207 139 1600
 
NEW YORK
41 Madison Avenue, New York, NY 10010
USA
+1 646 931 9045
pm-research@pageantmedia.com
 

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Log In
  • Update your profile
  • Give us your feedback

© 2021 Pageant Media Ltd | All Rights Reserved | ISSN: 1074-1240 | E-ISSN: 2168-8524

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies