Skip to main content

Main menu

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JOD
    • Editorial Board
    • Published Ahead of Print (PAP)
  • IPR Logo
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

User menu

  • Sample our Content
  • Request a Demo
  • Log in

Search

  • ADVANCED SEARCH: Discover more content by journal, author or time frame
The Journal of Derivatives
  • IPR Logo
  • About Us
  • Journals
  • Publish
  • Advertise
  • Videos
  • Webinars
  • More
    • Awards
    • Article Licensing
    • Academic Use
  • Sample our Content
  • Request a Demo
  • Log in
The Journal of Derivatives

The Journal of Derivatives

ADVANCED SEARCH: Discover more content by journal, author or time frame

  • Home
  • Current Issue
  • Past Issues
  • Videos
  • Submit an article
  • More
    • About JOD
    • Editorial Board
    • Published Ahead of Print (PAP)
  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter
Primary Article

A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns

James W. Taylor
The Journal of Derivatives Fall 1999, 7 (1) 64-78; DOI: https://doi.org/10.3905/jod.1999.319106
James W. Taylor
A professor at the London Business School.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
Loading

Abstract

Time-varying and stochastic volatility, non-lognormaility, mean reversion, price jumps, and non-zero correlation between volatility changes and asset returns all characterize asset returns, at least in some markets and some time periods. This can make accurately estimating the location of the tail of a returns distribution, as in a Value at Risk calculation, exceedingly difficult, especially when multiperiod returns distribution, as in a value at risk calculation, exceedingly difficult, especially when multiperiod returns are involved. The conceptual problem of determining which returns model to use brings out the inherent dependence of the answer on this assumption, and suggests that a non-parametric approach may be superior. In this article, Taylor offers a technique that focuses specifically on fitting the particular quantile of the distribution one is interested in, the 1% tail, for instance, using the non-parametric technique of quantile regression. In empirical comparisons against exponential smoothing or GARCH for three exchange rates, the quantile regression technique is shown to perform well.

  • © 1999 Pageant Media Ltd

Don’t have access? Click here to request a demo

Alternatively, Call a member of the team to discuss membership options

US and Overseas: +1 646-931-9045

UK: 0207 139 1600

Log in using your username and password

Forgot your user name or password?
PreviousNext
Back to top

Explore our content to discover more relevant research

  • By topic
  • Across journals
  • From the experts
  • Monthly highlights
  • Special collections

In this issue

The Journal of Derivatives
Vol. 7, Issue 1
Fall 1999
  • Table of Contents
  • Index by author
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word on The Journal of Derivatives.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns
(Your Name) has sent you a message from The Journal of Derivatives
(Your Name) thought you would like to see the The Journal of Derivatives web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns
James W. Taylor
The Journal of Derivatives Aug 1999, 7 (1) 64-78; DOI: 10.3905/jod.1999.319106

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Save To My Folders
Share
A Quantile Regression Approach to Estimating the Distribution of Multiperiod Returns
James W. Taylor
The Journal of Derivatives Aug 1999, 7 (1) 64-78; DOI: 10.3905/jod.1999.319106
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Tweet Widget Facebook Like LinkedIn logo

Jump to section

  • Article
  • Info & Metrics
  • PDF (Subscribers Only)
  • PDF (Subscribers Only)

Similar Articles

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • A Comparison of Markov–Functional and Market Models
  • Price Hedging with Local and Aggregate Quantity Risk
  • Delivery Options and Treasury–Bond Futures Hedge Ratios
Show more Primary Article
LONDON
One London Wall, London, EC2Y 5EA
United Kingdom
+44 207 139 1600
 
NEW YORK
41 Madison Avenue, New York, NY 10010
USA
+1 646 931 9045
pm-research@pageantmedia.com
 

Stay Connected

  • Follow IIJ on LinkedIn
  • Follow IIJ on Twitter

MORE FROM PMR

  • Home
  • Awards
  • Investment Guides
  • Videos
  • About PMR

INFORMATION FOR

  • Academics
  • Agents
  • Authors
  • Content Usage Terms

GET INVOLVED

  • Advertise
  • Publish
  • Article Licensing
  • Contact Us
  • Subscribe Now
  • Log In
  • Update your profile
  • Give us your feedback

© 2022 Pageant Media Ltd | All Rights Reserved | ISSN: 1074-1240 | E-ISSN: 2168-8524

  • Site Map
  • Terms & Conditions
  • Privacy Policy
  • Cookies