Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600
Abstract
The modelling of forward initial margin poses a challenging problem, as it requires the implementation of a nested Monte Carlo simulation, which is computationally intractable. Abundant literature has been published on approximation methods aiming to reduce the dimensionality of the problem, the most popular ones being the family of regression methods. This article describes the mathematical foundations on which these regression approximation methods lie. Mathematical rigor is introduced to show that, in essence, all methods are performing orthogonal projections on Hilbert spaces, while simply choosing a different functional form to numerically estimate the conditional expectation. The most popular methods in the literature so far are covered here. These are polynomial approximations, kernel regressions, and neural networks.
- © 2022 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600