Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600
Abstract
Previous academic research reveals that mean-variance asset pricing (MVAP) models such as the single-period capital asset pricing model (CAPM) fail to produce rational European option prices. This article shows two adaptations of MVAP models that may be used to value derivatives with nonlinear payouts. The first removes static option arbitrage in investors’ optimized aggregate portfolio selection. The second linearizes the pricing kernel, using a static version of the self-financing condition applied in dynamic option modeling. Both adaptations produce risk-neutral derivative prices in equilibrium for all finite-moment probability distributions of underlying asset prices with compact support. The derivation does not require stochastic calculus, frictionless continuous trading assumptions, or the solution of differential equations. The resulting model is a hybrid of equilibrium and arbitrage techniques that rationally values assets and derivatives.
- © 2022 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600